Co-transplantation of hippocampal neural stem cells and astrocytes and microvascular endothelial cells improve the memory in ischemic stroke rat.
نویسندگان
چکیده
BACKGROUND Neural stem cells (NSCs) are promising for ischemia stroke because they can replace damaged or lost cells. However, the adult central nervous system (CNS) does not provide an optimal microenvironment for exogenous NSCs to survive, proliferation and differentiation. We established a co-transplantation system with NSCs and astrocyte and brain microvascular endothelial cells (BMECs) to explore whether it can improve the memory ability in ischemic stroke rat. METHODS After building the ischemic stroke in 50 rats by middle cerebral artery occlusion and reperfusion (MCAO/R), transplantation of NSCs and astrocyte and BMECs were performed with different combination. RESULTS Laser doppler flowmetry and MRI were used to detect the ischemia of the model and 42 rats survived for the Morris water-maze test. The test shows that co-transplantation with the three different cells together can improve memory deficits in MCAO/R rat and it is the most effect group. Grafting with two cells have more effect in memory improving than one cell while transplanting NSC alone has no obvious effect on memory improving. CONCLUSIONS In NSC niche, astrocytes and BMECs are the most important cells to regulate and interaction with NSCs. Co-transplantation NSCs with astrocyte and BMECs can improve the memory ability in ischemia rat, which maybe the result of microenvironment improve by the astrocyte and BMECs.
منابع مشابه
Delivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model
Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...
متن کاملP 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes
Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...
متن کاملPartial Improvement of Spatial Memory Damages by Bone Marrow Mesenchymal Stem Cells Transplantation Following Trimethyltin Chloride Administration in the Rat CA1
Introduction: Trimethyltin Chloride (TMT) is a neurotoxin that can kill neurons in the nervous system and activate astrocytes. This neurotoxin mainly damages the hippocampal neurons. After TMT injection, behavioral changes such as aggression and hyperactivity have been reported in animals along with impaired spatial and learning memory. Hence, TMT is a suitable tool for an experimental model of...
متن کاملExtracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2015